innovative science • intuitive software

Is using a 2D drawing application to design for kinase selectivity an oxymoron?

Paolo Tosco

What causes selectivity?

> Electrostatics
> E.g. Alternative H-bond pattern
> Differing electrostatic expectations - electron rich vs electron poor
> Shape
> Smaller / Larger residues
> Alternative protein conformations
> Biological processes
> E.g. Compartmentalization of targets

The XED force field

> XED force field - eXtended Electron Distribution

> Multipoles via additional monopoles

$>$ Huckel
> separation of π and σ components of partial charges
$>\pi$ charges added to 'xed' atoms
$>\sigma$ charges added to nuclei
> Excellent modeling of substituent effects

> Full molecular mechanics force field with excellent coverage of organic chemistry, water and proteins
> Minimization, conformations etc.
> Not a dynamics force field

XED electrostatics generate detailed ligand interaction patterns

Designing for selectivity in Cresset applications

3D qualitative models of activity and selectivity

Designing for selectivity in Cresset applications

Torch $^{\text {TM }}$ - Molecule design using ligand alignment

Rethinking the design process and application

Accessible 3D design
$>$ Combine the best of 2D and 3D
> You draw in 2D but see the result in 3D 'live’
> Express your ideas
> Eliminate the duds

Collaborative environment
> Conversation tool
> No technological artefacts
$>$ No inhibition to collaboration
$>$ No idea is missed
> Easy communication across project teams

Generating live 3D feedback

> Docking too slow for "live"
> Remains a failsafe
> Created a "Grow3D" approach where new molecules are compared to the old and the change is applied intelligently
> Full algorithmic details in COMP 191, Gallery 3A, Omni San Diego Hotel, 2:20pm
> Multiple 3D coordinates are possible, which one is relevant?
> Consider selectivity case with similar proteins - dock to both targets or just one?
\rightarrow One 3D pose for each design easier to understand and use

The Grow3D methodology applied to CHK1 inhibitors

Journal of

Necicinat ocite This: J. Med. Chem. 2018, 61, 1061-1073 Article

Adventures in Scaffold Morphing: Discovery of Fused Ring

Heterocyclic Checkpoint Kinase 1 (CHK1) Inhibitors
Bin Yang, ${ }^{*}{ }^{\dagger}$ © Melissa M. Vasbinder, ${ }^{\dagger}$ Alexander W. Hird, ${ }^{\dagger}$ Qibin Su, ${ }^{\dagger}$ Haixia Wang, ${ }^{\dagger}$ Yan Yu, ${ }^{\dagger}$
Dorin Toader, ${ }^{\dagger, \|}$ Paul D. Lyne, ${ }^{\dagger}$ Jon A. Read, ${ }^{*}$ Jason Breed, ${ }^{\ddagger}$ Stephanos Ioannidis, ${ }^{\dagger}$ Chun Deng, ${ }^{\dagger, \perp}$
Michael Grondine, ${ }^{\dagger}$ Nancy DeGrace, ${ }^{\dagger}$ David Whitston, ${ }^{\dagger}$ Patrick Brassil, ${ }^{\dagger, \#}$ and James W. Janetka
${ }^{\dagger}$ Oncology Chemistry, IMED Biotech Unit, AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
${ }^{\ddagger}$ Discovery Sciences, IMED Biotech Unit, AstraZeneca, Building 310, Cambridge Science Park, Milton Road, Cambridge CB4 0WG,
U.K.

In 2018 AZ published an interesting scaffold morphing exercise on some Checkpoint kinase 1 (CHK1) inhibitors they had previously identified
> CHK1 is a promising target to improve the therapeutic index of DNA-damaging anti-cancer agents
> DNA damage triggers CHK1 activation, which in turn arrests the cell cycle, thus allowing DNA repair to take place
> Inhibiting CHK1 abrogates the cell cycle arrest, causing apoptosis
> CHK1 inhibitors would thus sensitize tumour cells to the action of DNA-damaging drugs

TCU and TZQ leads

Thiophene carboxamide urea (TCU)
Clinical candidate

The carbonyl group interacts with the backbone N-H of Cys-87

The amino group interacts with the backbone $\mathrm{C}=\mathrm{O}$ of Glu-85

Thiophene carboxamide urea (TCU) Matched pair with 1

Triazoloquinolone (TZQ)

Both 1 and 3 feature an intramolecular hydrogen bond which stabilizes the bioactive conformation

Ring closure, ring opening

1 (AZD7762)
Thiophene carboxamide urea (TCU)
Clinical candidate

Ring closure in grow3D

Let's see what grow3D can do about the ring closure of 1 to 4

I'll use the 2YDJ PDB structure (CHK1 co-crystallized with 1) as a reference

Positioning the initial 3D structure

I'll start by generating a 3D conformation of 1 and aligning it to the X-ray reference

In the background, multiple 3D conformations of 1 are generated, and the one with the highest field/shape similarity score to the reference is chosen

Scaffold morphing begins

Scaffold morphing begins

Then I turn the carbonyl group into an imine...
...the urea into an N-methylurea...
...now the difficult bit: ring closure! (holding my breath)...

Scaffold morphing begins

Then I turn the carbonyl group into an imine...
...the urea into an N-methylurea...
Whoa, that worked!

Scaffold morphing begins

Then I turn the carbonyl group into an imine...
...the urea into an N-methylurea...
...let's clean it up a little bit (both 2D and 3D)...

Scaffold morphing begins

Then I turn the carbonyl group into an imine...
...the urea into an N-methylurea...
...let's clean it up a little bit (both 2D and 3D)...
...now I turn the dihydropyrimidine into a dihydropyridine...

Scaffold morphing: done!

Then I turn the carbonyl group into an imine...
...the urea into an N-methylurea...
...let's clean it up a little bit (both 2D and 3D)...
...now I turn the dihydropyrimidine into a dihydropyridine...
...and aromatize to pyridine: done!

More transformations at constant \#atoms

I will now flip the thiophene ring to turn 4 into 5 in 4 moves:

1. Hydrogenate the thiophene...
2. Turn it into a cyclopentene..
3. Dehydrogenate cyclopentene...

More transformations at constant \#atoms

I will now flip the thiophene ring to turn 4 into 5 in 4 moves:

1. Hydrogenate the thiophene...
2. Turn it into a cyclopentene..
3. Dehydrogenate cyclopentene...
4. Turn cyclopentadiene into thiophene...

More transformations at constant \#atoms

I will now flip the thiophene ring to turn 4 into 5 in 4 moves:

1. Hydrogenate the thiophene...
2. Turn it into a cyclopentene..
3. Dehydrogenate cyclopentene...
4. Turn cyclopentadiene into thiophene... and clean it up

More transformations at constant \#atoms: how did we do?

This is how our designed 5 compares against its experimental X-ray structure 6FC8

Ring opening in grow3D

A more complicated design case

Adding in selectivity - traditional view

> How to design for selectivity?
> One 3D pose or multiple?
$>$ Focus on simplicity \rightarrow one pose
\rightarrow Visualize against alternative targets
\rightarrow As with many other applications
$\leftarrow \rightarrow$ C https:/torxlab.com
Ctorx = Projects - \#\#: Layouts - © Plugins - : Sharing 0

No Design Set

- 4.4-CTP

No Design Se

- 1 AZD776

3

Idea

入, N

Adding in selectivity - side by side visualization
> Traditional view creates difficulties in viewing interactions and clashes
> By using separate viewers we can assess the ligand against each protein independently

Adding in selectivity - Multiple 3D views
> There is no limit on the number of viewers
> Except screen space
> All respond to changes in the 2D structure

Looking ahead - more advanced modelling techniques

> Currently we are limited to viewing structures
> More advanced modelling techniques provide quantitation
> Electrostatic complementarity
$>$ FEP

Electrostatic Complementarity as a Fast and Effective Tool to Optimize Binding and Selectivity of Protein-Ligand Complexes Matthias R. Bauer* ${ }^{* \oplus}$ and Mark D. Mackey
Cresset, New Cambridge House, Bassingbourn Road, Litlington, Cambridgeshire SG8 0SS, U.K.
(3) Supporting Information

ABSTRACT: Electrostatic interactions between small molecules and their respective receptors are essential for molecular recognition and are also key contributors to the binding free energy. Assessing the
electrostatic match of protein-ligand complexes therefore provides electrostatic match of protein-ligand complexes therefore provides
important insights into why ligands bind and what can be changed to improve binding. Ideally, the ligand and protein electrostatic potentials at the protein-ligand interaction interface should maximize their complementarity while minimizing desolvation penalties. In this work, we present a fast and efficient tool to calculate and visualize the
electrostatic complementarity (EC) of protein-ligand complexes. We electrostatic complementarty (EC) of protein-ligand complexes. We structure-activity relationships (SAR) from literature data, including kinase, protein-protein interaction, and GPCR targets, and used these to demonstrate that the EC method can visualize, rationalize, and predict electrostatically driven ligand affinity changes and help to predict compound selectivity. The methodology presented here for the analysis of EC is a powerful and versatile tool for drug design

Electrostatic Complementarity as a guide for molecule design

> Electrostatic interactions between ligands and proteins are an important factor in recognition and binding energetics
> Assessing Electrostatic Complementarity (EC) provides
> Insight of why ligand bind
> Inform molecular design
> Predict activity
> Dedicated algorithm to calculate and display where electrostatics are complementary

cresset
software

Imatinib - EC and selectivity

target	pdb	pKD	Complem entarity	Complem entarity r
C-SRC a	2OIQ	4.4	0.36	0.55
p38a	3HEC	5.5	0.41	0.51
SYK	1XBB	5.5	0.27	0.43
ANC-AS	4CSV	6.0	0.32	0.40
LCK	2PL0	7.4	0.32	0.43
KIT	1T46	7.9	0.33	0.50
CSF1	4R7I	8.0	0.36	0.48
ABL2	3GVU	8.0	0.43	0.57
ABL	1OPJ	9.0	0.43	0.63
DDR1	4BKJ	9.1	0.41	0.57
${ }^{a}$ Imatinib binding decreased due to conf. penalty upon binding				

ANC-AS

EC Implementation into Torx

> Surfaces on
 > Ligands
 > Proteins

$\sqrt{ }>$ Minimization of ligand in binding site
> Color by EC
> Z-clipping

What about FEP?

> FEP calculations generally require skilled intervention
> Calculations slow and expensive too slow for automation?
> Certainly too slow for interactive feedback
> Alternative solution is to enable easy transfer of designs to specialist modelling application

Conclusions

> Using Grow3D enables real-time conversion of 2D sketches to 3D designs
> Full-fledged docking or alignment protocol as a failsafe
> Implementation in web interface enables flexible display options
> Future development to add quantitation - Electrostatic complementarity and FEP
innovative science • intuitive software

Thank you for your attention

paolo@cresset-group.com

Acknowledgments
@Cresset: Mark Mackey, Tim Cheeseright
The RDKit

